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B A S I C  T H E O R Y  

It can be established in several ways (Wallis 1989, 1992) that the averaged equations of motion 
of a uniform array and the surrounding ideal fluid, having one-dimensional motion in the 
x-direction with phase-average velocities vz and vl, respectively, can be expressed as 

dp 
PLf~ + p~(el/3 - 1)O)l - 132) = -- - -  + P~gl [1] 

dx 

dp 
P2132 - -  Pl ( e l / e2 ) (e l /3  - -  1)(~)1 - -  t~2) = - -  d--x 4- P2g2 + f 2  [2] 

el and e2 are the volume fractions of the phases and are subject to the constraint: 

el + e2 = 1 [3] 

p is the macroscopic pressure, gl and g2 are body force fields and f2 is the external force per unit 
volume of phase 2, acting on phase 2. "/3" is the "resistivity", which Rayleigh (1892) and others 
have shown to be given by 

3 e 2 
/3 = 1 + ~ 1 - e2 + O (e ~0/3) [4] 

for an isotropic regular array of spheres. 
Similar equations can also be set up in vector form (Wallis 1992). 
More sophisticated approaches are needed when there is convective acceleration, the pressure 

gradient is non-uniform, or the structure of the array evolves. 
The combination (el/3 - 1) has been called the "exertia" (Wallis 1989). If [4] is used, then 

e: O(e)3/3) (e,/3 - 1 ) = ~ +  

A related quantity is the "polarizability" (Wallis 1993) 

d~ = (/3 - 1)e,/e2 

which becomes, on using [4] 

d~ = ~ + O (e ,0/3) 

We now consider several illustrative cases of [1] and [2]. 

[5] 

[6] 

[7] 

E x a m p l e  A :  gl = g2 = dp /dx  = O. 

Motion is caused entirely by f : .  Using [1] and [2] we obtain 

E~,=e202\  e2/3 j [81 

799 



800 BRIEF COMMUNICATION 

v2 P 2 + P , \  E2fl . ] J=f2  [9] 

The factor in parentheses in [8] represents the ratio of the volumetric flux of fluid to the 
volumetric flux of particles, due to motion initiated by the particles, starting from rest. In the same 
sense as the "drift" discussed by Darwin (1952), it is the "added mass coefficient" (Wallis 1989). 

q / ~ - 1  
Cw - - -  [101 

c2fl 

which also describes the "added inertia" in [9]. 
If [4] is used, [lO] becomes 

3.~ 3.3 O(E~°'))  Cw = ½(1 -- 3• z + g ~ 2 - -  g~2 + [11] 

Example  B: gl = g2 = O; constant volumetric f l ux  

The constant volumetric flux condition is equivalent to the constraint 

cjfh + E2f)z = 0 [12] 

which leads, on using [1] and [2], to 

p,v2(fl -- 1) = d p  [131 
dx 

If desired, the term in parentheses in [14] could be called the "added mass coefficient" for this 
case (Zuber 1964) 

f l - 1  
Cz = - -  l [15] 

E2 

though there is no longer an equivalent interpretation for "drift" since [12] replaces [8]. 
If [4] is used we obtain 

Cz = ½ + 3[E2 + ~:] + E 3 + 0 (E~°/3)] [161 

Example  C: gl = g2 = O, v2 = 0 

In this case the array is held stationary while fluid accelerates past it. The resulting pressure 
gradient and force density on the particles are 

dp [17] 
Pl El ~Vl = dx 

If [4] is used in [18], we obtain 

-- pit), ~ (fl -- 1)=f2 [18] 
E2 

- pl f,  [3 + O(E~0/3)] = f 2  [19l 

which is remarkably simple. 
The factor appearing in [18] and [19] is the same as d2 in [6], which could have been derived by 

considering how the dipole moment of the array "resists" the applied fluid motion. 

Example  D: f 2 =  O; EifJj + E2t~2 = 0 

This example corresponds to the vertical acceleration of an array under gravity in a closed 
container moving at constant speed. The result is similar to example B; 
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Other definitions of "added mass" may be derived, as for example when the pressure difference 
built up across the array is used to push fluid through an "external impedance" (Cai & Wailis 1993). 
Sometimes, as when the pressure gradient is the only term on the right hand side in [1] and [2], 
no clear definition emerges. 

OTHER FORMS OF BASIC EQUATION 

The combination El X [1] + C2 × [2] yields the overall equation of motion for the mixture 

dp 
El Pl f~l + e-2P2f)2 = -- - -  + el Plgl + E2P2g2 + e2f2 [21] 

d x  

Whereas subtraction of [1] from [2] gives 

P21)2 -- Pt 151 -- Pl (vl -- 02) = P2gz -- Plgl +f2 [22] 

which appears like an "equation of motion for the array" in which there is a "hydrostatic" 
component, Pl~)t, due to the acceleration of the continuous phase. 

The coefficients in the "inertial coupling" term in [1], [2] and [22] are all different and none of 
them is equal to Cw or Cz. The use of them interchangeably as a single "added mass coefficient" 
is the cause of much mistaken identity in the technical literature. 

EQUIVALENCE OF F O R M U L A T I O N S  

All of the equations presented so far are mutually consistent and can be derived from each other. 
For instance, one can start from the particular solution given in one of the examples and impose 
a suitable uniform acceleration on it in order to create a more general equation such as [22]. There 
is nothing "more correct" about any of these equivalent formulations. 

The commonest reason why the users of one formulation do not realize that it is equivalent to 
the others is that they write down only one of the two momentum balance equations and are 
therefore unable to transform it. 

In a similar way, it is simple to take Zuber's (1964) example of the motion of a sphere inside 
a fluid-filled stationary sphere (corresponding to example B) and impose an acceleration on the 
entire field to obtain [1] and [2], with d p / d z  corresponding to the force per unit volume on the 
external spherical shell. The condition of no restraining force on the outer sphere gives the result 
in example A (it is the same as the condition of uniform potential there (Wallis 1993)). 

Various other transformations are possible, by introducing composites, such as the mean 
volumetric flux, or bulk velocity: 

j = EIVl + ~:2V2 [23] 

and the "drift flux": 

Jl~ = El E2(v, - v2) [24] 

As in diffusion theory, the relative motion may be referred to the mean volumetric flux, e.g. 

Vl - - j  = ~;2(vl -- v2); v2--j = -- Et(Vl -- V2) [25] 

and [22] expressed as 

P~f~2- P'J  + P' ( ~ - - 1) (1)z-j) = P 2 g 2 -  P,g,  + f2 [26] 

which leads to the appearance of Cz in the coupling term, 
Alternatively, a "reference velocity" resembling an "effective" velocity of the continuous phase 

(as though El in [23] were modified by a factor/~) may be defined 

U = El #Vl + (1 --  E, F)V2 [271 
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and used to convert [l] and [2] to the simpler forms 

and 

Pt/-) -- dp 
- - d--~ + P ' g '  [28]  

P:e2 + pl(q/E2)(~,  - (7) = - dp + Pzg2 + f2 [29] 
d x  

while [22] can be rearranged to 

c~f l -  i 
P2(~2 - P, (7 + P, ~ ((?2 - (7) = P2g2 - P,g, + f2 [30] 

with Cw appearing as the coefficient in the coupling term. 
In works by Wallis (1989, 1991) and Geurst (1985, 1986) the reference velocity that appears in 

[27] is equal to minus the gradient of the "macroscopic potential" 

- -  V ~  = vl + ( E l f l -  l ) ( v l  - v2) [31]  

which is related to the bulk velocity by 

- Vq~ = j  + d2E2(v~ - Vz) [32] 

where the second term in [32] is the dipole moment per unit volume in response to the relative 
motion. If the array is not isotropic, fl and d2 become tensors. 

We may now eliminate (7 between [28] and [30] and use [10] to obtain 

dp (1 + Cw) + P2g2 -k- Cwp~g, +f2  [33] l~2(P2 + C w p l )  = - -  d x  

which resembles the equation of motion of a pseudo-fluid made up of unit volume of dispersed 
phase and a volume Cw of fluid entrained with it and moving at the same velocity. Indeed, [28] 
and [33] may be derived directly (Wallis 1989) from the Cook-Harlow (1984) idealized model in 
which a fraction l / f l  of the volume contains fluid moving at speed U, while the rest of the fluid, 
occupying a volume fraction E~- l/fl, is entrained with the dispersed phase which occupies a 
volume fraction c2. Geurst (1988) exploits this idea in a more general form. 

In view of the simplicity, in both form and interpretation, of [28], [29], [30] and [33], I prefer 
this version, but the choice is a matter of taste and does not invalidate any of the other equivalent 
formulations. 

It is possible to eliminate t~ 2 from [1] and [2] to obtain another "equation of motion for the fluid": 

dp E2Elfl - -  1 
PJ fq - + Pig, + (P2g2 +f2 -- P~g, ) [34] 

dz El fl - 1 

The final factor in [34] is the ratio of the exertia to the polarizability. 
Should other terms, describing further external or mutual forces of interaction, be added to [1] 

and [2], they will simply appear, multiplied by some factor, as additional terms in all of the 
equations presented here, without changing their form. 

Related arguments may be found in Smereka & Milton (1991). 
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